Issue 10, 2018

Nanoscale mechanism of the stabilization of nanoporous gold by alloyed platinum

Abstract

Nanoporous gold (NPG) is usually made by electrochemical dealloying of Ag from binary AgAu alloys. The resulting nanoscale ligaments are not very stable, and tend to coarsen with time by surface self-diffusion, especially in electrolyte, which may lead to inferior electrocatalytic properties. Addition of a small amount of Pt to the precursor alloy is known to refine and stabilize the nanoporous product (NPG-Pt). However, the mechanisms by which Pt serves to refine the microstructure remain poorly understood. The present study aims to expand our knowledge of the role of Pt by examining NPG-Pt at atomic resolution with Atom Probe Tomography (APT), as well as by aberration-corrected Transmission Electron Microscopy. Atomic level observation of Pt enrichment on ligament surfaces sheds light on the underlying mechanisms that give rise to Pt's refining effect. Owing to improved Ag retention with higher Pt content, NPG-Pt1 (made by dealloying Ag77Au22Pt1) was shown to have the highest surface area-to-volume ratio, compared to NPG-Pt3 (made by dealloying Ag77Au20Pt3). Quantitative estimates reveal up to 5-fold enrichment of Pt at nanoligament surfaces, compared to the precursor content, in NPG-Pt. The interface between the dealloyed layer and the substrate was captured by APT, for the first time. The findings of this investigation add insight into the functionality of NPG-Pt and its prospective catalytic performance.

Graphical abstract: Nanoscale mechanism of the stabilization of nanoporous gold by alloyed platinum

Supplementary files

Article information

Article type
Paper
Submitted
03 Nov 2017
Accepted
11 Feb 2018
First published
12 Feb 2018

Nanoscale, 2018,10, 4904-4912

Nanoscale mechanism of the stabilization of nanoporous gold by alloyed platinum

A. A. El-Zoka, B. Langelier, A. Korinek, G. A. Botton and R. C. Newman, Nanoscale, 2018, 10, 4904 DOI: 10.1039/C7NR08206A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements