Issue 5, 2018

Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers

Abstract

Novel therapies to prevent bacterial infections are of utmost importance in biomedical research due to the emergence of multidrug-resistant strains of bacteria. Herein, we report the preparation, characterization and antibacterial evaluation of sulfonated polystyrene nanoparticles simultaneously releasing two antibacterial species, nitric oxide (NO) and singlet oxygen (O2(1Δg)), upon irradiation with visible light. The nanoparticles were prepared by simple and scalable processes from nanofiber membranes with an encapsulated NO photodonor and/or ionically entangled tetracationic porphyrin/phthalocyanine photosensitizers. The release of NO and O2(1Δg) from the polystyrene nanoparticles is controlled by light wavelength and dose, as well as by temperature, which influences the diffusion coefficient and solubility of both species in the polystyrene matrix. The concentrations of NO and O2(1Δg) were measured by amperometric and time-resolved spectroscopic techniques and by chemical analysis. Due to the efficient photogeneration of both species at physiological temperature and resultant strong antibacterial action observed on Escherichia coli, the nanoparticles are a promising material for antibacterial applications triggered/modulated by light and temperature.

Graphical abstract: Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers

Supplementary files

Article information

Article type
Paper
Submitted
26 Nov 2017
Accepted
13 Jan 2018
First published
15 Jan 2018

Nanoscale, 2018,10, 2639-2648

Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers

J. Dolanský, P. Henke, Z. Malá, L. Žárská, P. Kubát and J. Mosinger, Nanoscale, 2018, 10, 2639 DOI: 10.1039/C7NR08822A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements