The role of amine ligands in governing film morphology and electrical properties of copper films derived from copper formate-based molecular inks†
Abstract
Copper formate complexes with various primary amines, secondary amines and pyridines were prepared, and their decomposition into conductive films was characterized. A comparison of the various complexes reveals that the temperature of thermolysis depends on the number of hydrogen bonds that can be formed between the amine and formate ligands. The particle size resulting from sintering of the copper complexes is shown to depend on the fraction of amine ligand released during the thermolysis reaction. The particle size in turn is shown to govern the electrical properties of the copper films. Correlations between the properties of the amines, such as boiling point and coordination strength, with the morphology and electrical performance of the copper films were established and provide a basis for the molecular design of copper formate molecular inks.