Issue 19, 2018

Screening and multiple detection of cancer exosomes using an SERS-based method

Abstract

As a kind of most important cancer biomarker, exosomes are getting more frequently investigated in cancer diagnosis. In this study, we proposed an SERS-based method for the screening and simultaneous multiple detection of exosomes using magnetic substrates and SERS probes. Specifically, the capturing substrates are achieved using gold shell magnetic nanobeads modified by aptamers, which can capture most kinds of exosomes by recognizing the generic surface protein CD63. Moreover, the SERS probes are made of gold nanoparticles decorated with a Raman reporter and a specific aptamer for targeting exosomes. Further, for the simultaneous detection of multiple kinds of exosomes, three kinds of SERS probes were designed using different SERS reporters. While detecting specific kinds of exosomes, the capturing substrates were mixed with these three kinds of SERS probes. When the target exosome is present, an apta-immunocomplex can be formed among the target exosomes, the substrate, and the corresponding kind of SERS probes, and the other non-specific SERS probes remain in the suspension. Hence, an SERS signal with a decreased intensity will be detected in the supernatant, indicating the presence of the target exosomes. Finally, this detection method has also been successfully employed for the detection of exosomes in real blood samples; this proves that the proposed SERS-based method is a promising tool for clinical cancer screening based on exosomes.

Graphical abstract: Screening and multiple detection of cancer exosomes using an SERS-based method

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2017
Accepted
27 Mar 2018
First published
09 Apr 2018

Nanoscale, 2018,10, 9053-9062

Screening and multiple detection of cancer exosomes using an SERS-based method

Z. Wang, S. Zong, Y. Wang, N. Li, L. Li, J. Lu, Z. Wang, B. Chen and Y. Cui, Nanoscale, 2018, 10, 9053 DOI: 10.1039/C7NR09162A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements