Issue 13, 2018

Mesoporous-silica induced doped carbon nanotube growth from metal–organic frameworks

Abstract

Carbon materials, with a controllable structure, derived from metal–organic frameworks (MOFs) have emerged as a new class of electrocatalysts in renewable energy devices. However, efficient conversion of MOFs to small diameter doped carbon nanotubes in inert gases at high temperatures (>600 °C) remains a significant challenge. In this study, we first report the growth of small diameter cobalt and nitrogen co-doped carbon nanotubes (Co/N-CNTs) from mesoporous silica (mSiO2)-coated Co-based MOFs (ZIF-67). The presence of a layer of mSiO2 outside the ZIF-67 nanocrystals prevents the Co nanocatalysts from quick aggregation, and significantly serves as a unique ‘sieve’ for inducing the catalytic growth of CNTs during pyrolysis. The obtained Co/N-CNTs, with ∼13 nm diameter evolved from the pristine MOF architecture, exhibit higher catalytic activity and stability for oxygen reduction than commercial Pt/C electrocatalysts in alkaline media. This novel strategy opens a new avenue for the synthesis of Co/N-CNTs with great promise for developing high performance and cheap electrocatalysts.

Graphical abstract: Mesoporous-silica induced doped carbon nanotube growth from metal–organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2018
Accepted
22 Feb 2018
First published
22 Feb 2018

Nanoscale, 2018,10, 6147-6154

Mesoporous-silica induced doped carbon nanotube growth from metal–organic frameworks

H. Zhou, D. He, A. I. Saana, J. Yang, Z. Wang, J. Zhang, Q. Liang, S. Yuan, J. Zhu and S. Mu, Nanoscale, 2018, 10, 6147 DOI: 10.1039/C8NR00137E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements