Issue 10, 2018

Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal–organic framework nanoparticles

Abstract

Amino-triphenyl dicarboxylate-bridged Zr4+ metal–organic framework nanoparticles (NMOFs), 100–130 nm, are modified with a nucleic acid complementary to the VEGF aptamer. The nucleic acid-functionalized NMOFs were loaded with the anti-cancer drug doxorubicin (or Rhodamine 6G as a drug model), and the loaded NMOFs were capped by hybridization with the VEGF aptamer that yielded VEGF-responsive duplex nucleic acid gates. In the presence of VEGF, a biomarker over-expressed in cancer cells, selective unlocking of the gates proceeds through the formation of VEGF/aptamer complexes, resulting in the release of the loads. In addition, the VEGF aptamer locking units were conjugated to the AS1411 aptamer sequence that binds to nucleolin receptors associated with cancer cells, resulting in the construction of cancer-cell targeted VEGF-responsive doxorubicin-loaded NMOFs. The different drug-loaded stimuli-responsive NMOFs reveal selective permeation into MDA-MB-231 breast cancer cells, compared to their incorporation into normal MCF-10A breast cells, with a two-fold enhanced incorporation into the MDA-MB-231 cells of the AS1411 aptamer-functionalized NMOFs. Cytotoxicity experiments revealed impressive selective apoptosis of the doxorubicin-loaded NMOFs towards the MDA-MB-231 cancer cells compared to the normal MCF-10A breast cells. A 55% and 70% MDA-MB-231 cell apoptosis was observed upon subjecting the cells to the VEGF aptamer and the VEGF aptamer/AS1411 aptamer conjugate-caged NMOFs, respectively, for a time-interval of three days, where only <10% apoptosis of the MCF-10A cells was observed under similar conditions.

Graphical abstract: Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal–organic framework nanoparticles

Supplementary files

Article information

Article type
Communication
Submitted
08 Jan 2018
Accepted
02 Feb 2018
First published
02 Feb 2018

Nanoscale, 2018,10, 4650-4657

Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal–organic framework nanoparticles

W. Chen, S. Yang Sung, M. Fadeev, A. Cecconello, R. Nechushtai and I. Willner, Nanoscale, 2018, 10, 4650 DOI: 10.1039/C8NR00193F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements