A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm†
Abstract
Optical bioimaging that works in the second near infrared region (NIR-II, 1000–1700 nm) has emerged as a next generation imaging technique with superior imaging sensitivity and spatial resolution compared to traditional optical imaging utilizing visible and near-infrared lights (below 900 nm). Herein, a new Sc-based NIR-II probe was explored for high performance NIR-II in vivo bioimaging and optical imaging-guided non-invasive brain blood vessel visualization. The lanthanide doped Sc-based probes (KSc2F7:Yb3+/Er3+) possess a pure orthorhombic phase structure with size control by adjusting the F− ion content. These probes present a dominant red upconversion (UC) emission, which is significantly different from the traditional NaYF4:Yb/Er host, which usually has a green UC emission. More importantly, apart from the dominant red UC emission, these probes also possess a strong NIR-II downconversion (DC) emission centered at 1525 nm, which is usually ignored for bioimaging applications. In vivo NIR-II imaging reveals that our explored Sc-based nanorods are promising probes for highly sensitive optical imaging. Moreover, non-invasive through-skull fluorescence bioimaging of brain vessels with high spatial resolution was demonstrated. Therefore, it is expected that Sc-based nanomaterials with unique dominant red UC and DC NIR-II emissions beyond 1500 nm are ideal probes for bio-applications.