Issue 26, 2018

An 800 nm driven NaErF4@NaLuF4 upconversion platform for multimodality imaging and photodynamic therapy

Abstract

Multimodality imaging-guided therapy based on lanthanide-doped upconversion nanoparticles (UCNPs) has become a trend in cancer theranostics. However, the overheating effect of 980 nm excitation in photodynamic therapy (PDT) and the difficulties in optimizing multimodality imaging integration within a single particle are still challenges. Herein, 800 nm driven NaErF4@NaLuF4 UCNPs have been explored for optimized multimodality imaging and near-infrared (NIR) triggered PDT. Our results confirmed that the optimal ∼5 nm shell thickness can well balance the enhancement of upconversion luminescence and the attenuation of energy transfer efficiency from Er3+ towards a photosensitizer, to achieve efficient production of singlet oxygen (1O2) for PDT under 800 nm excitation. Furthermore, the as-obtained NaErF4@NaLuF4 UCNPs showed effective and applicable performance for upconversion luminescence (UCL) imaging, X-ray computed tomography (CT), and high-field T2 magnetic resonance imaging (MRI). This nanomaterial can serve as an excellent theranostic agent for multimodality imaging and image-guided therapy.

Graphical abstract: An 800 nm driven NaErF4@NaLuF4 upconversion platform for multimodality imaging and photodynamic therapy

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2018
Accepted
22 Mar 2018
First published
04 Apr 2018

Nanoscale, 2018,10, 12356-12363

An 800 nm driven NaErF4@NaLuF4 upconversion platform for multimodality imaging and photodynamic therapy

Q. Li, X. Li, L. Zhang, J. Zuo, Y. Zhang, X. Liu, L. Tu, B. Xue, Y. Chang and X. Kong, Nanoscale, 2018, 10, 12356 DOI: 10.1039/C8NR00446C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements