Issue 24, 2018

pH-Induced transformation of ligated Au25 to brighter Au23 nanoclusters

Abstract

Thiolate-protected gold nanoclusters have recently attracted considerable attention due to their size-dependent luminescence characterized by a long lifetime and large Stokes shift. However, the optimization of nanocluster properties such as the luminescence quantum yield is still a challenge. We report here the transformation of Au25Capt18 (Capt labels captopril) nanoclusters occurring at low pH and yielding a product with a much increased luminescence quantum yield which we have identified as Au23Capt17. We applied a simple method of treatment with HCl to accomplish this transformation and we characterized the absorption and emission of the newly created ligated nanoclusters as well as their morphology. Based on DFT calculations we show which Au nanocluster size transformations can lead to highly luminescent species such as Au23Capt17.

Graphical abstract: pH-Induced transformation of ligated Au25 to brighter Au23 nanoclusters

Supplementary files

Article information

Article type
Paper
Submitted
23 Jan 2018
Accepted
03 Apr 2018
First published
04 Apr 2018

Nanoscale, 2018,10, 11335-11341

pH-Induced transformation of ligated Au25 to brighter Au23 nanoclusters

M. Waszkielewicz, J. Olesiak-Banska, C. Comby-Zerbino, F. Bertorelle, X. Dagany, A. K. Bansal, M. T. Sajjad, I. D. W. Samuel, Z. Sanader, M. Rozycka, M. Wojtas, K. Matczyszyn, V. Bonacic-Koutecky, R. Antoine, A. Ozyhar and M. Samoc, Nanoscale, 2018, 10, 11335 DOI: 10.1039/C8NR00660A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements