Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction†
Abstract
We have reported the synthesis of hierarchical whisker-on-sheet (HWS) NiCoP anchored on Ni foam with adjustable surface structure for efficient hydrogen evolution reaction (HER). The HWS NiCoP was obtained by controllable phosphidation of HWS Ni–Co-carbonates hydroxide precursor grown on Ni foam (NF). The experimental parameters were optimally tuned to understand the formation process of the precursor and to regulate the microstructure of the materials. The test results indicated that the HWS NiCoP/NF can produce a current density of 10 mA cm−2 (η10) at a low overpotential of 59 mV and a current density of 100 mA cm−2 (η100) at an overpotential of 220 mV for HER. Notably, upon surface activation with KOH, the HER performance of HWS NiCoP/NF could be dramatically enhanced with η10 and η100 values of 42 mV and 141 mV, respectively. The HWS NiCoP/NF showed a superior performance to NiCoP displaying other morphologies (sheets and wires etc.) The good performance of HWS NiCoP/NF should be attributed to their special whisker-on-sheet structures that are favourable for effective contact with the electrolyte. Also, hydrated metals can be formed on surface after the alkali treatment step, which is beneficial to moderate the bonding to hydrogen and thus, improve the HER activity. The present study will be indicative toward the construction of highly-efficient HER catalysts by regulating the structure of the materials.