Issue 24, 2018

Enhanced stability and performance of few-layer black phosphorus transistors by electron beam irradiation

Abstract

Few layer black phosphorus (BP) has recently emerged as a potential graphene analogue due to its high mobility and direct, appreciable, band gap. The fabrication and characterization of field effect transistors (FETs) involves exposure of the channel material to an electron beam (e-beam) in imaging techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and fabrication techniques like electron beam lithography (EBL). Despite this, the effect of e-beam irradiation on BP-FET performance has not been studied experimentally. In this work, we report the first experimental study on the impact of e-beam irradiation on BP-FETs. An electron beam is known to induce defects and structural changes in 2D materials like graphene, MoS2etc. resulting in the deterioration of the device quality. However, for BP-FETs, we observe an improvement in the on-current and carrier mobility (μ) along with a decrease in threshold voltage (Vth) on exposure to an e-beam with 15 keV energy for 80 seconds. These changes can be attributed to the capture of electrons by traps near the SiO2–BP interface and reduced BP surface roughness due to e-beam exposure. Hysteresis measurements and physical characterization (i.e. atomic force microscopy (AFM), X-ray photoelectron (XPS) and Raman spectroscopies) validate these mechanisms. Reduced hysteresis indicates occupation of the traps, AFM surface scans indicate reduced surface roughness and XPS data show a reduced phosphorus oxide (POx) peak immediately after exposure. Raman measurements indicate a probable structural change due to the interaction between e-beam and BP which could result in better stability.

Graphical abstract: Enhanced stability and performance of few-layer black phosphorus transistors by electron beam irradiation

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2018
Accepted
09 May 2018
First published
17 May 2018

Nanoscale, 2018,10, 11616-11623

Enhanced stability and performance of few-layer black phosphorus transistors by electron beam irradiation

N. Goyal, N. Kaushik, H. Jawa and S. Lodha, Nanoscale, 2018, 10, 11616 DOI: 10.1039/C8NR01678J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements