Issue 18, 2018

Revealing the role of NH4VO3 treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries

Abstract

Although Ni-rich layered oxides are considered a candidate of next-generation cathode materials, their inherent properties, such as surface lithium residues and structural destruction, cause detrimental electrochemical performance, especially at elevated temperatures. Here, a facile ball-milling method is proposed to remove the lithium residues and enhance the electrochemical performance of LiNi0.6Co0.2Mn0.2O2. After NH4VO3 treatment, a lithium ion-conductive Li3VO4 coating layer is found on the LiNi0.6Co0.2Mn0.2O2 surface at heat-treatment temperatures of 300 and 450 °C, with a small part of vanadium ions diffusing into the surface lattice. When the temperature surpasses 600 °C, almost all vanadium ions dope into the bulk structure. The complex relationships between the post-sintering temperature and surface structure and their impact on electrochemical properties are discussed in detail. Electrochemical tests show that 0.5 wt% NH4VO3 treated LiNi0.6Co0.2Mn0.2O2 at 450 °C exhibits much improved cycling stability (96.1% cycling retention at 0.5C after 100 cycles and 97.2% after 50 cycles at 55 °C), rate capability (117.0 mA h g−1 at 5C), and storage property (4683 ppm lithium residue amount after storing in air for 7 days). Such superior performance is ascribed to the Li3VO4 coating layer that inhibits the electrolyte decomposition and helps create a stable and thinner cathode–electrolyte interface, resulting in decreased interfacial resistance. In addition, this coating layer suppresses internal micro-stress and phase transformation from a layered to spinel and rock-salt structure, which increases the structural integrity of LiNi0.6Co0.2Mn0.2O2 during repeated charge–discharge cycling.

Graphical abstract: Revealing the role of NH4VO3 treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2018
Accepted
08 Apr 2018
First published
09 Apr 2018

Nanoscale, 2018,10, 8820-8831

Revealing the role of NH4VO3 treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries

C. Zhang, S. Liu, J. Su, C. Chen, M. Liu, X. Chen, J. Wu, T. Huang and A. Yu, Nanoscale, 2018, 10, 8820 DOI: 10.1039/C8NR01707G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements