A novel fluorescent adhesive-assisted biomimetic mineralization†
Abstract
We propose a novel fluorescent adhesive-assisted biomimetic mineralization strategy, based on which 1 wt% of sodium fluorescein and 25 wt% of polyacrylic acid stabilized amorphous calcium phosphate (PAA-ACP) nanoparticles were incorporated into a mild self-etch adhesive (Clearfil S3 Bond) as a fluorescent mineralizing adhesive. The characterization of the PAA-ACP nanoparticles indicates that they were spherical particles clustered together, each particle with a diameter of approximately 20–50 nm, in a metastable phase with two characteristic absorption peaks (1050 cm−1 and 580 cm−1). Our results suggest that the fluorescent mineralizing adhesive was non-cytotoxic with minimal esthetic interference and its fluorescence intensity did not significantly decrease within 6 months. Our data reveal that the fluorescent mineralizing adhesive could induce the extra- and intra-fibrillar remineralization of the reconstituted type I collagen, the demineralized enamel and dentin substrate. Our data demonstrate that a novel fluorescent adhesive-assisted biomimetic mineralization strategy will pave the way to design and produce anti-carious materials for the prevention of dental caries.