Issue 32, 2018

Highly stable photoelectrochemical cells for hydrogen production using a SnO2–TiO2/quantum dot heterostructured photoanode

Abstract

Photoelectrochemical (PEC) water splitting implementing colloidal quantum dots (QDs) as sensitizers is a promising approach for hydrogen (H2) generation, due to the QD's size-tunable optical properties. However, the challenge of long-term stability of the QDs is still unresolved. Here, we introduce a highly stable QD-based PEC device for H2 generation using a photoanode based on a SnO2–TiO2 heterostructure, sensitized by CdSe/CdS core/thick-shell “giant” QDs. This hybrid photoanode architecture leads to an appreciable saturated photocurrent density of ∼4.7 mA cm−2, retaining an unprecedented ∼96% of its initial current density after two hours, and sustaining ∼93% after five hours of continuous irradiation under an AM 1.5G (100 mW cm−2) simulated solar spectrum. Transient photoluminescence (PL) measurements demonstrate that the heterostructured SnO2–TiO2 photoanode exhibits faster electron transfer compared with the bare TiO2 photoanode. The lower electron transfer rate in the TiO2 photoanode can be attributed to slow electron kinetics in the ultraviolet regime, revealed by ultrafast transient absorption spectroscopy. Graphene microplatelets were further introduced into the heterostructured photoanode, which boosted the photocurrent density to ∼5.6 mA cm−2. Our results demonstrate that the SnO2–TiO2 heterostructured photoanode holds significant potential for developing highly stable PEC cells.

Graphical abstract: Highly stable photoelectrochemical cells for hydrogen production using a SnO2–TiO2/quantum dot heterostructured photoanode

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2018
Accepted
12 Jul 2018
First published
01 Aug 2018

Nanoscale, 2018,10, 15273-15284

Highly stable photoelectrochemical cells for hydrogen production using a SnO2–TiO2/quantum dot heterostructured photoanode

K. Basu, H. Zhang, H. Zhao, S. Bhattacharya, F. Navarro-Pardo, P. K. Datta, L. Jin, S. Sun, F. Vetrone and F. Rosei, Nanoscale, 2018, 10, 15273 DOI: 10.1039/C8NR02286K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements