Photocurrent modulation under dual excitation in individual GaN nanowires
Abstract
The photo-response properties of vapor–liquid–solid (VLS) grown [100] oriented individual GaN nanowires of the diameter ranging from 30 to 100 nm are investigated under the joint illumination of above and sub-bandgap lights. When illuminated with above-bandgap light, these wires show persistent photoconductivity (PPC) effects with long build-up and decay times. The study reveals the quenching of photoconductivity (PC) upon illumination with an additional sub-bandgap light. PC recovers when the sub-bandgap illumination is withdrawn. A rate equation model attributing the PPC effect to the entrapment of photo-generated holes in the surface states and the PC quenching effect on the sub-bandgap light driven release of the holes from the trapped states has been proposed. The average height of the capture barrier has been found to be about 400 meV. The study also suggests that the capture barrier has a broad distribution with an upper cut-off energy of ∼2 eV.