Towards molecular electronic devices based on ‘all-carbon’ wires†
Abstract
Nascent molecular electronic devices based on linear ‘all-carbon’ wires attached to gold electrodes through robust and reliable C–Au contacts are prepared via efficient in situ sequential cleavage of trimethylsilyl end groups from an oligoyne, Me3Si–(CC)4–SiMe3 (1). In the first stage of the fabrication process, removal of one trimethylsilyl (TMS) group in the presence of a gold substrate, which ultimately serves as the bottom electrode, using a stoichiometric fluoride-driven process gives a highly-ordered monolayer, Au|CCCCCCCCSiMe3 (Au|C8SiMe3). In the second stage, treatment of Au|C8SiMe3 with excess fluoride results in removal of the remaining TMS protecting group to give a modified monolayer Au|CCCCCCCCH (Au|C8H). The reactive terminal CC–H moiety in Au|C8H can be modified by ‘click’ reactions with (azidomethyl)ferrocene (N3CH2Fc) to introduce a redox probe, to give Au|C6C2N3HCH2Fc. Alternatively, incubation of the modified gold substrate supported monolayer Au|C8H in a solution of gold nanoparticles (GNPs), results in covalent attachment of GNPs on top of the film via a second alkynyl carbon–Au σ-bond, to give structures Au|C8|GNP in which the monolayer of linear, ‘all-carbon’ C8 chains is sandwiched between two macroscopic gold contacts. The covalent carbon–surface bond as well as the covalent attachment of the metal particles to the monolayer by cleavage of the alkyne C–H bond is confirmed by surface-enhanced Raman scattering (SERS). The integrity of the carbon chain in both Au|C6C2N3HCH2Fc systems and after formation of the gold top-contact electrode in Au|C8|GNP is demonstrated through electrochemical methods. The electrical properties of these nascent metal–monolayer–metal devices Au|C8|GNP featuring ‘all-carbon’ molecular wires were characterised by sigmoidal I–V curves, indicative of well-behaved junctions free of short circuits.