Issue 27, 2018

Resistance of water transport in carbon nanotube membranes

Abstract

Carbon nanotube (CNT) membranes have long been considered as next-generation membranes due to superfast water transport inside tubes. However, a large pressure loss occurs at the pore mouth, and consequently water transport through the whole tubes is significantly retarded. To find out the reason behind this, we conduct systematic non-equilibrium molecular dynamics (NEMD) simulations on water transport through CNT membranes with various tube diameters and lengths. The whole transport resistance is contributed by the interfacial and interior parts, and the interfacial contribution plays a dominating role in short tubes and only can be ignored when the tube length reaches a scale of several micrometers. With regard to the origin of the interfacial resistance, the hydrogen bonding rearrangement (HBR) effect accounts for at least 45%, and the rest is attributed to the geometrical or steric crowding of water molecules near the pore mouth. To reduce the dominant interfacial resistance, we change the shape of the pore mouth from plate to hourglass by mimicking the aquaporin water channels. The interfacial resistance is thus decreased by >27%. It is also found that the reduction is originated from the optimized HBR rather than the subdued steric crowding of water molecules near the pore mouth.

Graphical abstract: Resistance of water transport in carbon nanotube membranes

Supplementary files

Article information

Article type
Paper
Submitted
17 Apr 2018
Accepted
16 Jun 2018
First published
18 Jun 2018

Nanoscale, 2018,10, 13242-13249

Resistance of water transport in carbon nanotube membranes

X. Zhang, W. Zhou, F. Xu, M. Wei and Y. Wang, Nanoscale, 2018, 10, 13242 DOI: 10.1039/C8NR03116A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements