Issue 28, 2018

A multi-shelled CoP nanosphere modified separator for highly efficient Li–S batteries

Abstract

Lithium–sulfur batteries are considered to be one of the most promising energy-storage systems because of their high theoretical energy density, as well as low cost, nontoxicity and natural abundance of sulfur. However, their poor cycling stability mostly originates from the shuttling of polysulfides which hinders their future practical applications. Here, multi-shelled CoP nanospheres are designed as a coated separator material for Li–S batteries for the first time. Conductive CoP can efficiently anchor polysulfides not only owing to its polar character but also its partial natural surface oxidation feature as evidenced by XPS results, which further activates Co sites for chemically trapping polysulfides via strong Co–S bonding. Furthermore, the unique multi-shelled structure can capture polysulfides to alleviate the “shuttle effect”. Consequently, the battery using a CoP coated separator exhibits outstanding cycling stability with a capacity degradation of 0.078% per cycle over 500 cycles at a current density of 1 C and excellent rate performance (725 mA h g−1 at 5 C). It is also worth noting that a high areal capacity of 3.2 mA h cm−2 can be achieved even with a sulfur loading of 3.24 mg cm−2. Our approach demonstrates the convenient fabrication and application potential for a multi-shelled CoP nanosphere modified separator for highly efficient Li–S batteries.

Graphical abstract: A multi-shelled CoP nanosphere modified separator for highly efficient Li–S batteries

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2018
Accepted
15 Jun 2018
First published
15 Jun 2018

Nanoscale, 2018,10, 13694-13701

A multi-shelled CoP nanosphere modified separator for highly efficient Li–S batteries

X. Chen, X. Ding, C. Wang, Z. Feng, L. Xu, X. Gao, Y. Zhai and D. Wang, Nanoscale, 2018, 10, 13694 DOI: 10.1039/C8NR03854F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements