Issue 31, 2018

Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites

Abstract

Building transient and flexible memristors is a promising strategy for developing emerging memory technologies. Here, a transient and flexible memristor based on a polymer nanocomposite, with a configuration of silver nanowire (AgNW)/citric acid quantum dot (CA QD)-polyvinyl pyrrolidone (PVP)/AgNW, is fabricated using a full-solution process method. The obtained device exhibits reversible resistive switching behavior and a dynamic random access memory (DRAM) storage feature, with the significant merits of a high ON/OFF ratio, low switching voltage, excellent reproducibility and desirable high flexibility, indicating outstanding memory characteristics such as low misreading, low power operation and low cost potential. Moreover, an operating mechanism of charge trapping/de-trapping of the quantum dots in the polymer matrix has been proposed. Importantly, the memristor can be disintegrated in water within 30 minutes, showing that it is a promising candidate for transient memories. This work paves a new way for potential use of this material in transient electronics, implanted electronics, data storage security and flexible electronic systems.

Graphical abstract: Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites

Supplementary files

Article information

Article type
Communication
Submitted
18 May 2018
Accepted
12 Jul 2018
First published
13 Jul 2018

Nanoscale, 2018,10, 14824-14829

Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites

Z. Zhou, H. Mao, X. Wang, T. Sun, Q. Chang, Y. Chen, F. Xiu, Z. Liu, J. Liu and W. Huang, Nanoscale, 2018, 10, 14824 DOI: 10.1039/C8NR04041A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements