Issue 31, 2018

Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers

Abstract

Nanoscale room-temperature ferroelectricity is ideal for developing advanced non-volatile high-density memories. However, reaching the thin film limit in conventional ferroelectrics is a long-standing challenge due to the presence of the critical thickness effect. van der Waals materials, thanks to their stable layered structure, saturated interfacial bonding and weak interlayer couplings, are promising for exploring ultra-thin two-dimensional (2D) ferroelectrics and device applications. Here, we demonstrate a switchable room-temperature ferroelectric diode built upon a 2D ferroelectric α-In2Se3 layer as thin as 5 nm in the form of a graphene/α-In2Se3 heterojunction. The intrinsic out-of-plane ferroelectricity of the α-In2Se3 thin layers is evidenced by the observation of reversible spontaneous electric polarization with a relatively low coercive electric field of ∼2 × 105 V cm−1 and a typical ferroelectric domain size of around tens μm2. Owing to the out-of-plane ferroelectricity of the α-In2Se3 layer, the Schottky barrier at the graphene/α-In2Se3 interface can be effectively tuned by switching the electric polarization with an applied voltage, leading to a pronounced switchable double diode effect with an on/off ratio of ∼105. Our results offer a new way for developing novel nanoelectronic devices based on 2D ferroelectrics.

Graphical abstract: Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2018
Accepted
05 Jul 2018
First published
06 Jul 2018

Nanoscale, 2018,10, 14885-14892

Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers

S. Wan, Y. Li, W. Li, X. Mao, W. Zhu and H. Zeng, Nanoscale, 2018, 10, 14885 DOI: 10.1039/C8NR04422H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements