Harnessing magnetic dipole resonance in novel dielectric nanomaterials†
Abstract
Photonic manipulation with plasmonic materials is typically associated with high ohmic losses, which has triggered interest in alternative strategies based on low loss dielectric materials. Here we describe a novel dielectric nanomaterial capable of supporting strong Mie resonances from the visible to IR regimes. The fundamental block of this metamaterial is based on nanopillars in a core–shell configuration, with a large refractive index (RI) contrast between the (low RI) core and the (high RI) shell. The material showed strongly tunable optical resonances that varied from visible to near and mid IR as a function of shell thickness, core diameter and inter-pillar spacing. The numerical simulations, which are in good agreement with the experimental results, suggest the optical response to be dominated by magnetic dipole resonances. This versatile material platform is CMOS compatible, can be fabricated in a scalable manner as thin films, can act as strong scatterers in colloidal suspensions and thereby can provide several promising technological opportunities in nanophotonics.