Issue 37, 2018

Missing links towards understanding the equilibrium shapes of hexagonal boron nitride: algorithm, hydrogen passivation, and temperature effects

Abstract

There is a large discrepancy between the experimental observations and the theoretical predictions in the morphology of hexagonal boron nitride (h-BN) nanosheets. Theoretically predicted hexagons terminated by armchair edges are not observed in experiments; and experimentally observed triangles terminated by zigzag edges are found theoretically unstable. There are two key issues in theoretical investigations, namely, an efficient and accurate algorithm of the absolute formation energy of h-BN edges, and a good understanding of the role of hydrogen passivation during h-BN growth. Here, we first proposed an efficient algorithm to calculate asymmetric edges with a self-consistent accuracy of about 0.0014 eV Å−1. This method can also serve as a standard approach for other two-dimensional (2D) compound materials. Then, by using this method, we discovered that only when edges are passivated by hydrogen atoms and temperature effects are taken into account can experimental morphology be explained. We further employed the Wulff construction to obtain the equilibrium shapes of H-passivated h-BN nanosheets under their typical growth conditions at T = 1300 K and p = 1 bar, and found out that the equilibrium shapes are sensitive to hydrogen passivation and the growth conditions. Our results resolved long-standing discrepancies between experimental observations and theoretical analysis, explaining the thermodynamic driving force of triangular, truncated triangular, and hexagonal shapes, and revealing the key role of hydrogen in h-BN growth. These discoveries and the advancement in the algorithm may open the gateway towards the realization of 2D electronic and spintronic devices based on h-BN.

Graphical abstract: Missing links towards understanding the equilibrium shapes of hexagonal boron nitride: algorithm, hydrogen passivation, and temperature effects

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2018
Accepted
20 Aug 2018
First published
21 Aug 2018

Nanoscale, 2018,10, 17683-17690

Missing links towards understanding the equilibrium shapes of hexagonal boron nitride: algorithm, hydrogen passivation, and temperature effects

J. Zhang, W. Zhao and J. Zhu, Nanoscale, 2018, 10, 17683 DOI: 10.1039/C8NR04732D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements