Issue 34, 2018

Facile silane functionalization of graphene oxide

Abstract

The facile silane functionalization of graphene oxide (GO) was achieved yielding vinyltrimethoxysilane-reduced graphene oxide (VTMOS-rGO) nanospheres located in the inter-layer spacing between rGO sheets via an acid–base reaction using aqueous media. The successful grafting of the silane agent with pendant vinyl groups to rGO was confirmed by a combination of Fourier-transform infrared (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The structure and speciation of the silane-graphene network (nanosphere) and, the presence of free vinyl groups was verified from solid-state magic angle spinning (MAS) and solution 13C and 29Si nuclear magnetic resonance (NMR) measurements. Evidence from Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM) and TEM-High-Angle Annular Dark-Field (TEM-HAADF) imaging showed that these silane networks aided the exfoliation of the rGO layers preventing agglomeration, the interlayer spacing increased by 10 Å. The thermal stability (TGA/DTA) of VTMOS-rGO was significantly improved relative to GO, displaying just one degradation process for the silane network some 300 °C higher than either VTMOS or GO alone. The reduction of GO to VTMOS-rGO induced sp2 hybridization and enhanced the electrical conductivity of GO by 105 S m−1.

Graphical abstract: Facile silane functionalization of graphene oxide

Article information

Article type
Paper
Submitted
12 Jun 2018
Accepted
15 Aug 2018
First published
15 Aug 2018

Nanoscale, 2018,10, 16231-16242

Facile silane functionalization of graphene oxide

S. S. Abbas, G. J. Rees, N. L. Kelly, C. E. J. Dancer, J. V. Hanna and T. McNally, Nanoscale, 2018, 10, 16231 DOI: 10.1039/C8NR04781B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements