Modified surface states of NaGdF4:Yb3+/Tm3+ up-conversion nanoparticles via a post-chemical annealing process†
Abstract
An amorphous layer acting as a quenching center at the surface of oleic acid-capped NaGdF4:Yb3+/Tm3+ nanoparticles is observed directly, which can be reconstructed via a novel post-chemical annealing process. The amorphous phase of the surface layer of NaGdF4:Yb3+/Tm3+ nanoparticles gradually crystallizes as the post-chemical annealing temperature increases; meanwhile, the good dispersibility of the as-obtained nanoparticles is maintained. The reduction of surface defects and higher local symmetry of the crystal field environment around the doped rare-earth ions contribute to drastically increased up-conversion (UC) emission intensity of the NaGdF4:Yb3+/Tm3+ nanoparticles. In particular, the blue emission of Tm3+ at 450 nm enhances 10-fold after the post-chemical annealing process at 250 °C compared with the counterpart without further surface-state treatments. The color gamut of well-crystallized NaGdF4:Yb3+/Tm3+ with a modified surface covers the blue to yellow region in CIE chromaticity coordinates via a non-steady-state UC process. The results indicate that the surface states of these UC nanoparticles can be feasibly improved via the post-chemical annealing process without encouraging agglomeration, which further optimizes their UC properties for practical applications.