Issue 45, 2018

Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window

Abstract

To increase disease survival rates, there is a vital need for diagnosis at very preliminary stages. Then, low concentrations of biomarkers are present which must be effectively detected and quantified for reliable diagnosis. Fluorescent biosensing is commonly enabled through the labelling of these biomarkers with nanostructures and fluorophores. Metal Enhanced Fluorescence (MEF) is a phenomenon whereby the intensity of a fluorescent biosensor signal can be considerably enhanced by placing a metallic nanostructure and fluorophore in close proximity. Importantly, this allows for an even lower detection limit and thus earlier diagnosis. In recent years, extraordinary efforts have been made in the understanding of how the chemical and physical properties of nanomaterials may be exploited advantageously. Via precise nanoscale engineering, it is possible to optimize the optical properties of plasmonic nanomaterials, which now need to be refined and applied in diagnostics. Through MEF, the intensity of this signal can be related in direct proportion to analyte concentration, allowing for diagnosis of disease at an earlier stage than previously. This review paper outlines the potential and recent progress of applied MEF biosensors, highlighting their substantial clinical potential. MEF biosensors are presented both upon assay-based platforms and in solution, with comments on the various metallic nanoparticle morphologies available. This is explored across various emission wavelengths from ultra-violet to the second near infrared window (NIR-II), emphasising their wide applicability. Further to this, the importance of near infrared (NIR-I and NIR-II) biosensing is made clear as it allows for higher penetration in biological media. Finally, by developing multiplexing techniques, multiple and simultaneous analyses of analytes can be achieved. Through the incorporation of metal enhanced fluorescence into biosensing, it will be possible to diagnose disease more rapidly and more reliably than before, with the potential to save countless lives.

Graphical abstract: Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window

Associated articles

Article information

Article type
Review Article
Submitted
31 Jul 2018
Accepted
12 Sep 2018
First published
16 Oct 2018
This article is Open Access
Creative Commons BY license

Nanoscale, 2018,10, 20914-20929

Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window

S. M. Fothergill, C. Joyce and F. Xie, Nanoscale, 2018, 10, 20914 DOI: 10.1039/C8NR06156D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements