Issue 41, 2018

Improved efficiency and thermal stability of ternary all-small-molecule organic solar cells by NCBA as a third component material

Abstract

In this work, organic solar cells (OSCs) were fabricated with a blend of PC71BM and p-DTS-(FBTTh2)2 employed as a binary photoactive layer and with a dihydronaphthyl-based C60 bisadduct (NCBA) small-molecule acceptor used as a third component material. We demonstrate that the short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), power conversion efficiency (PCE), and thermal stability can all be enhanced simultaneously. In addition, the crystallinity can be finely optimized and the photon harvesting ability was enhanced for short-wavelength light by adjusting the NCBA doping ratio, leading to efficient exciton dissociation and charge-carrier transport. At the same time, the ternary photoactive layer, with a small amount of NCBA as a third component material, reduced monomolecular recombination and bimolecular recombination under open-circuit and short-circuit conditions, respectively. Such a ternary structure with NCBA as a third component material helped enhance the crystallinity and fix the surface morphology of the photoactive layer, thus reducing the decay ratio while increasing the thermal annealing treatment time. Consequently, the PCE reaches 9.1% for ternary OSCs with a 12 wt% NCBA doping ratio in a blended acceptor, with 87.2% of the initial PCE value maintained after 100 h of thermal annealing treatment at 90 °C, which is much higher than that obtained for the PCE of binary OSCs.

Graphical abstract: Improved efficiency and thermal stability of ternary all-small-molecule organic solar cells by NCBA as a third component material

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2018
Accepted
05 Oct 2018
First published
08 Oct 2018

Nanoscale, 2018,10, 19524-19535

Improved efficiency and thermal stability of ternary all-small-molecule organic solar cells by NCBA as a third component material

Z. Liu and N. Wang, Nanoscale, 2018, 10, 19524 DOI: 10.1039/C8NR06448B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements