Issue 41, 2018

Facile scalable fabrication of ultra-thin freestanding SiO2-based hybrid nanosheets with multifunctional properties

Abstract

Two-dimensional (2D) nanomaterials with unique features like a large surface-to-volume ratio and the quantum confinement effect have attracted great attention for applications in energy storage, catalysis, sensing, membranes, etc. Silica (SiO2)-based nanosheets, as members of the 2D material family, are extremely intriguing because of their unique electronic insulation, bio-compatibility and profound chemical and thermal stability. However, there is still a lack of available approaches for fabricating SiO2 nanosheets in a simple, large-scale and cost-effective fashion. In the present research, we have proposed a facile and mass fabrication method for ultra-thin freestanding SiO2-based hybrid nanosheets (SS) with a uniform thickness by crashing hollow microcapsules through ultrasonication treatment. The morphology, composition, and application of the hybrid nanosheets are investigated in detail. The experimental results demonstrate that SS nanosheets with an inorganic–organic hybrid structure display a Janus-type composition with double bonds residing on one side and hydroxyl groups on the other. Additionally, the SS nanosheets could be easily modified by introducing various functional components such as aluminium hydroxide (AH). The as-prepared SS nanosheets and AH modified nanosheets (SS-AH) could considerably enhance the thermal stability of silicone rubber with remarkably increased thermal decomposition temperatures and residues compared with the reference samples. SS and SS-AH sheets are highly superior in usage as polymer thermal stability fillers because of the following aspects: the hybrid nature of SS and SS-AH is advantageous to facilitate the filler–polymer interaction, so these particles could be readily dispersed into silicone without any hydrophobicity modification; these fillers could improve the thermal stability of elastomers at a much lower filler loading (<8%) than the previously reported filler system (e.g. >20 wt%). Furthermore, the nanosheets are also proved to be efficient in usage as emulsifiers for the immiscible oil–water system with a higher efficiency and emulsion stability than the commonly used emulsifiers. Consequently, the hybrid nanosheets fabricated in this work will not only enrich the family of ultra-thin 2D materials but also attract more interest in potential applications in functional nanocomposites and solid emulsifiers.

Graphical abstract: Facile scalable fabrication of ultra-thin freestanding SiO2-based hybrid nanosheets with multifunctional properties

Article information

Article type
Paper
Submitted
15 Aug 2018
Accepted
22 Sep 2018
First published
25 Sep 2018

Nanoscale, 2018,10, 19351-19359

Facile scalable fabrication of ultra-thin freestanding SiO2-based hybrid nanosheets with multifunctional properties

X. Zhang, H. Ren and A. He, Nanoscale, 2018, 10, 19351 DOI: 10.1039/C8NR06591H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements