Electrical detection of plasmon-induced isomerization in molecule–nanoparticle network devices†
Abstract
We use a network of molecularly linked gold nanoparticles (NPSAN: nanoparticle self-assembled network) to demonstrate the electrical detection (conductance variation) of plasmon-induced isomerization (PII) of azobenzene derivatives (azobenzene bithiophene: AzBT). We show that PII is more efficient in a 3D-like NPSAN (cluster-NPSAN) than in a purely two-dimensional NPSAN (i.e., a monolayer of AzBT functionalized Au NPs). By comparison with the usual optical (UV-visible light) isomerization of AzBT, PII shows faster (a factor > ∼10) isomerization kinetics. Possible PII mechanisms are discussed: electric field-induced isomerization, two-phonon process, and plasmon-induced resonance energy transfer (PIRET), the latter being the most likely.