Issue 3, 2018

Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle–photosensitiser conjugates

Abstract

Gold nanoparticles (AuNPs; ca. 4 nm) were synthesised and functionalised with a mixed monolayer of polyethylene glycol (PEG) and one of two zinc phthalocyanines (ZnPcs), the difference between the two molecules was the length of the carbon chain that connects the Pc to the gold core. The chain was composed of either three (C3Pc) or eleven (C11Pc) carbon atoms. The C11Pc photosensitiser displayed higher fluorescence emission intensity than the C3Pc in solution. By contrast, the C3Pc photosensitiser exhibited higher fluorescence when bound to the surface of the AuNPs than the C11Pc, despite the shorter carbon chain which was expected to quench the fluorescence. In addition, the C3Pc nanoparticle conjugates exhibited an enhancement in the production of singlet oxygen (1O2). The metal-enhanced 1O2 production led to a remarkable photodynamic efficacy for the treatment of human breast cancer cells.

Graphical abstract: Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle–photosensitiser conjugates

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2017
Accepted
11 Dec 2017
First published
21 Dec 2017

Photochem. Photobiol. Sci., 2018,17, 281-289

Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle–photosensitiser conjugates

P. García Calavia, M. J. Marín, I. Chambrier, M. J. Cook and D. A. Russell, Photochem. Photobiol. Sci., 2018, 17, 281 DOI: 10.1039/C7PP00225D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements