The effect of the functional ionic group of the viologen derivative on visible-light driven CO2 reduction to formic acid with the system consisting of water-soluble zinc porphyrin and formate dehydrogenase†
Abstract
The effect of the functional ionic group of 4,4′-bipyridinium salt derivatives (4,4′-BPs) as the electron carrier on the visible-light driven conversion of CO2 to formic acid with the system consisting of water-soluble zinc tetraphenylporphyrin tetrasulfonate (ZnTPPS) and formate dehydrogenase (FDH) in the presence of triethanolamine (TEOA) as an electron donor was investigated. 1,1′-Diaminoethyl- (DAV), 1-aminoethyl-1′-methyl- (AMV), 1-carboxymethyl-1′-methyl- (CMV) and 1,1′-dicarboxymethyl-4,4′-bipyridinium salt (DCV) were prepared as the 4,4′-BPs with the functional ionic group. Irradiation of a CO2 saturated buffer solution containing TEOA, ZnTPPS, 4,4′-BP and FDH with visible light irradiation resulted in the production of formic acid. By using 4,4′-BPs with the cationic aminoethyl-group, DAV or AMV as an electron carrier, the effective visible-light driven formic acid production based on the CO2 reduction was observed compared to the 4,4′-BPs with the anionic carboxymethyl-group, CMV or DCV. The formic acid production rate with DAV was approximately 3.2 times higher than that of the system with DCV.