Issue 1, 2018

Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane

Abstract

In this work, we propose a facile, fast and large-scale synthesis of β-Mo2C catalysts (about 100 grams). The current approach uses a simple solid mixture of (NH4)6Mo7O24·4H2O and carbon nanotubes (CNTs) as a precursor and employs a fast heating rate method without holding time. Moreover, there was no need for passivating the carbide products. A series of β-Mo2C/CNT catalysts (denoted as MoC-5, -15, -30 and -60) were successfully prepared from the precursors with the Mo content ranging from 5 to 60 wt% and their catalytic activities for dry reforming of methane (DRM) were evaluated. CH4-TPSR and CO2-TPO over the fresh samples proved that the abilities of CH4 dissociation and oxidation resistance of β-Mo2C were greatly enhanced by compositing with CNTs. It was also found that these abilities were dependent on the Mo content, the particle size and the interaction between β-Mo2C and CNTs. Among these β-Mo2C/CNT catalysts, MoC-30 showed the best catalytic stability for DRM, attributed to its high activity for CH4 dissociation and high resistance to oxidation. Additionally, it is worth noting that the catalytic stability of monometallic MoC-30 was found to be superior to that of bimetallic Ni/β-Mo2C (recently known to be an efficient non-noble metal catalyst for DRM).

Graphical abstract: Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane

Supplementary files

Article information

Article type
Research Article
Submitted
01 Sep 2017
Accepted
24 Oct 2017
First published
25 Oct 2017

Inorg. Chem. Front., 2018,5, 90-99

Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane

H. Gao, Z. Yao, Y. Shi, R. Jia, F. Liang, Y. Sun, W. Mao and H. Wang, Inorg. Chem. Front., 2018, 5, 90 DOI: 10.1039/C7QI00532F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements