Issue 8, 2018

Modulating single-molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 clusters

Abstract

Three Dy4 clusters, [Dy4(tmhd)8(L)2(CH3OH)2]·CH3OH (1), [Dy4(hfac)8(L)2(DMF)2]·C7H16 (2) and [Dy4(dbm)6(L)23-OH)2]·CH2Cl2 (3) (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedione, hfac = hexafluoroacetylacetonate, dbm = 1,3-diphenyl-1,3-propanedione, HL = 2-[(2-(hydroxyimino)propanehydrazide)methyl]), have been successfully synthesized by using three different β-diketonate salts (Dy(tmhd)3·2H2O, Dy(hfac)3·2H2O, and Dy(dbm)3·2H2O) to react with HL and by changing the solvent. The X-ray structural analysis shows that four DyIII ions in clusters 1 and 2 are linearly arranged; however, cluster 3 contains one Dy4 center with a rhombus-shaped arrangement. The different structures of three Dy4 clusters were profoundly affected by these minor changes in β-diketonate or a change in the solvent. Magnetic studies reveal that Dy4 clusters 1–3 exhibit different single-molecule magnet (SMM) behaviors under a zero dc field. 1 and 2 display slow magnetic relaxation behaviors with effective energy barriers ΔE/kB = 1.44 K for 1 and ΔE/kB = 50.96 K for 2, while for 3, two distinct slow magnetic relaxation processes are observed, with effective energy barriers ΔE/kB = 40.45 K for the fast relaxation process and ΔE/kB = 113.63 K for the slow relaxation process. This study shows that the β-diketonate coligands play an important role in modulating molecular structures and further affecting the magnetic dynamics of the lanthanide clusters towards multiple magnetic relaxation processes.

Graphical abstract: Modulating single-molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 clusters

Supplementary files

Article information

Article type
Research Article
Submitted
11 Mar 2018
Accepted
02 May 2018
First published
03 May 2018

Inorg. Chem. Front., 2018,5, 1876-1885

Modulating single-molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 clusters

W. Wang, X. Kang, H. Shen, Z. Wu, H. Gao and J. Cui, Inorg. Chem. Front., 2018, 5, 1876 DOI: 10.1039/C8QI00214B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements