Issue 20, 2018

Triisopropylsilylethynyl-substituted indenofluorenes: carbonyl versus dicyanovinylene functionalization in one-dimensional molecular crystals and solution-processed n-channel OFETs

Abstract

The design and synthesis of novel electron-deficient and solution-processable polycyclic aromatic hydrocarbons offers great opportunities for the development of low-cost and large-area (opto)electronics. Although (trialkylsilyl)ethynyl (R3Si–C[triple bond, length as m-dash]C–) has emerged as a very popular unit to solubilize organic semiconductors, it has been applied only to a limited class of materials that are mostly substituted on short molecular axes. Herein, two novel solution-processable indenofluorene-based semiconductors, TIPS-IFDK and TIPS-IFDM, bearing (triisopropylsilyl)ethynyl end units at 2,8-positions (long molecular axis substitution) were synthesized, and their single-crystal structures, optoelectronic properties, solution-sheared thin-film morphologies/microstructures, and n-channel field-effect responses were studied. In accordance with the DFT calculations, the HOMO/LUMO energies of the new compounds are found to be −5.77/−3.65 eV and −5.84/−4.18 eV for TIPS-IFDK and TIPS-IFDM, respectively, reflecting the high electron deficiency of the new π-backbones. Both semiconductors exhibit slightly S-shaped molecular frameworks with highly coplanar IFDK/IFDM π-cores, and they form slipped π-stacked one-dimensional (1-D) columnar motifs in the solid state. However, substantial differences in the degree of π–π interactions and stacking distances (4.04 Å vs. 3.47 Å) were observed between TIPS-IFDK and TIPS-IFDM as a result of carbonyl vs. dicyanovinylene functionalization, which results in a three orders of magnitude variation in the charge carrier mobility of the corresponding thin films. Top-contact/bottom-gate OFETs fabricated via solution-shearing TIPS-IFDM yielded one of the best performances in the (trialkylsilyl)ethynyl literature (μe = 0.02 cm2 V−1 s−1, Ion/Ioff = 107–108, and VT ∼ 2 V under ambient atmosphere) for a 1-D polycrystalline semiconductor microstructure. To the best of our knowledge, the molecules presented here are the first examples of n-type semiconductors substituted with (trialkylsilyl)ethynyl groups on their long molecular axes.

Graphical abstract: Triisopropylsilylethynyl-substituted indenofluorenes: carbonyl versus dicyanovinylene functionalization in one-dimensional molecular crystals and solution-processed n-channel OFETs

Supplementary files

Article information

Article type
Research Article
Submitted
10 Aug 2018
Accepted
05 Sep 2018
First published
06 Sep 2018

Org. Chem. Front., 2018,5, 2912-2924

Triisopropylsilylethynyl-substituted indenofluorenes: carbonyl versus dicyanovinylene functionalization in one-dimensional molecular crystals and solution-processed n-channel OFETs

R. Ozdemir, S. Park, İ. Deneme, Y. Park, Y. Zorlu, H. A. Alidagi, K. Harmandar, C. Kim and H. Usta, Org. Chem. Front., 2018, 5, 2912 DOI: 10.1039/C8QO00856F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements