Issue 4, 2018

Synthesis and characterisation of brannerite compositions (U0.9Ce0.1)1−xMxTi2O6 (M = Gd3+, Ca2+) for the immobilisation of MOX residues

Abstract

A suite of uranium brannerites for the disposal of MOX residues, formulated (U0.9Ce0.1)1−xMxTi2O6 (M = Ca2+ and/or Gd3+), were prepared using a mixed oxide route under oxidising, inert and reducing atmospheres (air, argon and H2/N2). Gd3+ was added to act as a neutron absorber in the final Pu bearing wasteform and Ce added to function as a structural analogue for Pu. X-ray powder diffraction of the synthesised specimens found that phase distribution was strongly affected by the processing atmosphere and Gd content. In all cases prototypical brannerite was formed, accompanied by different secondary phases dependent on processing atmosphere. Microstructural analysis (SEM) of the sintered samples confirmed the results of the X-ray powder diffraction. Bulk XANES found that Ti remained in the Ti4+ oxidation state whereas Ce was uniformly reduced to the Ce3+ oxidation state regardless of processing conditions or stoichiometry. Micro-focus XANES was used to determine U oxidation in the brannerite phase and showed that U oxidised to higher U oxidation states to charge compensate. It was concluded that the charge balance mechanism was a combination of U oxidation and A-site vacancies.

Graphical abstract: Synthesis and characterisation of brannerite compositions (U0.9Ce0.1)1−xMxTi2O6 (M = Gd3+, Ca2+) for the immobilisation of MOX residues

Associated articles

Article information

Article type
Paper
Submitted
24 Oct 2017
Accepted
21 Dec 2017
First published
09 Jan 2018
This article is Open Access
Creative Commons BY license

RSC Adv., 2018,8, 2092-2099

Synthesis and characterisation of brannerite compositions (U0.9Ce0.1)1−xMxTi2O6 (M = Gd3+, Ca2+) for the immobilisation of MOX residues

D. J. Bailey, M. C. Stennett, B. Ravel, D. Grolimund and N. C. Hyatt, RSC Adv., 2018, 8, 2092 DOI: 10.1039/C7RA11742F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements