Enhancement of CO2 capture performance of aqueous MEA by mixing with [NH2e-mim][BF4]
Abstract
Alcohol amine solutions have a high absorption capacity and rate for CO2 capture, however, there are some shortcomings such as high energy-consumption and low stability. To enhance CO2 capture performance of aqueous MEA, a functional ionic liquid ([NH2e-mim][BF4]) was introduced based on the advantages for CO2 capture. Absorbents were prepared with the molar concentration ratio of [NH2e-mim][BF4] to the 30 vol% aqueous MEA of 0 : 10, 1 : 9, 2 : 8, 3 : 7, 4 : 6 and 6 : 4. The density and the viscosity of the investigated absorbents were measured and the effects of the molar fraction of [NH2e-mim][BF4] (nI) and temperature on CO2 absorption performance were investigated. CO2 desorption performance of the solvent at different temperatures was discussed. The stability performance of the absorbent with nI of 2 : 8 (I/M2:8) was examined by five consecutive cyclic tests. The results showed that for pure CO2, the I/M2:8 displayed the highest absorption performance at 303 K under 1 bar: a comparable CO2 absorption capacity of the 30 vol% aqueous MEA and a higher CO2 absorption rate at the later absorption stage. Moreover, with the increase of temperature, CO2 absorption capacity and rate decreased, while CO2 desorption efficiency and rate increased. 393 K was chosen as the optimum desorption temperature with the desorption efficiency of 99.31%. The introducing of IL contributed to CO2 desorption performance of the absorbents significantly. The properties (CO2 absorption capacity, mass loss, density and viscosity) of the I/M2:8 during the cycles suggested that the IL-MEA mixture had an excellent stability performance.