Issue 6, 2018, Issue in Progress

Crystal growth kinetics, microstructure and electrochemical properties of LiFePO4/carbon nanocomposites fabricated using a chelating structure phosphorus source

Abstract

LiFePO4/carbon (LFP/C) nanocomposites were fabricated using bis(hexamethylene triamine penta (methylene phosphonic acid)) (BHMTPMPA) as a new and environment-friendly phosphorus source. The activation energy of the fabricated LFP/C was first investigated in depth based on the theoretical Arrhenius equation and experimental results of the LFP/C composite particle size distribution to explore the grain growth dynamics of the LFP/C particles during the sintering process. The results indicate that the activation energy is lower than 3.82 kJ mol−1 when the sintering temperature is within the range of 600–800 °C, which suggests that the crystal growth kinetics of the LFP/C particles is diffusion-controlled. The diffusion-controlled mechanism results from the mutual effects of chelation with Fe2+ cations, in situ formation of carbon layers and high concentration of hard aggregates due to the use of an organic phosphorous source (BHMTPMPA). The diffusion-controlled mechanism of the LFP/C effectively reduces the LFP particle size and hinders the growth of anomalous crystals, which may further result in nanosized LFP particles and good electrochemical performances. SEM and TEM analyses show that the prepared LFP/C has a uniform particle size of about 300 nm, which further confirms the effects of the diffusion-controlled mechanism of the LFP/C particle crystal growth kinetics. Electrochemical tests also verify the significant influence of the diffusion-controlled mechanism. The electrical conductivity and Li-ion diffusion coefficient (DLi+) of the fabricated LFP/C nanocomposite are 1.56 × 10−1 S cm−1 and 6.24 × 10−11 cm2 s−1, respectively, due to the chelating structure of the phosphorus source. The fabricated LFP/C nanocomposite exhibits a high reversible capacity of 166.9 mA h g−1 at 0.2C rate, and presents an excellent rate capacity of 134.8 mA h g−1 at 10C.

Graphical abstract: Crystal growth kinetics, microstructure and electrochemical properties of LiFePO4/carbon nanocomposites fabricated using a chelating structure phosphorus source

Article information

Article type
Paper
Submitted
01 Nov 2017
Accepted
30 Dec 2017
First published
16 Jan 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 3151-3160

Crystal growth kinetics, microstructure and electrochemical properties of LiFePO4/carbon nanocomposites fabricated using a chelating structure phosphorus source

L. He, W. Zha and D. Chen, RSC Adv., 2018, 8, 3151 DOI: 10.1039/C7RA12029J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements