Issue 37, 2018, Issue in Progress

Hydrogen storage in Li, Na and Ca decorated and defective borophene: a first principles study

Abstract

Recently synthesized two-dimensional (2D) borophene possesses unique structural, mechanical, electrical and optical properties. Herein, we present a comprehensive study of H2 storage in alkali metal decorated and defect containing 2D borophene using density functional theory calculations. While the adsorption of H2 over pristine borophene was found to be weak with a binding energy of −0.045 eV per H2, metal decoration and point defects enhanced the adsorption strength significantly. Interestingly, the magnitudes of binding energy for a single H2 molecule over Li, Na and Ca decorated borophene were found to increase up to −0.36, −0.34, and −0.12 eV per H2, respectively. On the other hand, while the binding energy of one H2 molecule over the borophene substrate containing a single vacancy (SV) was only −0.063 eV per H2, similar to that of phosphorene, the binding energy increased to an enormous −0.69 eV per H2 over borophene containing a double vacancy (DV). To gain further insight into the H2 adsorption process and identify sources of charge transfer, differential charge densities and projected density of states were calculated. Significant charge accumulation and depletion caused strong polarization of the H2 molecules. Finally, Na, Li and Ca decorated borophene yielded the gravimetric densities 9.0%, 6.8%, and 7.6%, respectively. The gravimetric density of the borophene containing a DV was found to be the highest, a staggering 9.2%, owing to increased interactions between DV borophene and the H2 molecules. These results suggest that borophene can be an effective substrate for H2 storage by carefully engineering it with metal decoration and point defects.

Graphical abstract: Hydrogen storage in Li, Na and Ca decorated and defective borophene: a first principles study

Article information

Article type
Paper
Submitted
17 Nov 2017
Accepted
10 May 2018
First published
06 Jun 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 20748-20757

Hydrogen storage in Li, Na and Ca decorated and defective borophene: a first principles study

S. Haldar, S. Mukherjee and C. V. Singh, RSC Adv., 2018, 8, 20748 DOI: 10.1039/C7RA12512G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements