Issue 10, 2018, Issue in Progress

Effect of Ti-doping on the electrochemical performance of sodium vanadium(iii) phosphate

Abstract

Na3V2−xTix(PO4)3 (x = 0.00, 0.05, 0.10, and 0.15) was successfully synthesized by a conventional solid-state route. The XRD results show that Ti is incorporated in the lattice of Na3V2(PO4)3 and the tetragonal structure has not been changed after doping. Among all the composites, the Na3V1.9Ti0.1(PO4)3 composite delivers the highest discharge capacity of 114.87 mA h g−1 at 0.1C and possesses a capacity retention of 96.23% after 20 cycles at 0.1C, demonstrating the better rate performance and cycle stability in the potential range of 2.0–3.8 V. Electrochemical impedance spectroscopy (EIS) results reveal that the Na3V1.9Ti0.1(PO4)3 composite has a lower charge transfer resistance and a higher Na-ion diffusion coefficient compared to other composites. The results indicate that Ti-doping in Na3V2(PO4)3 can effectively enhance the electrochemical performance of this tetragonal compound, especially at a high charge/discharge rate.

Graphical abstract: Effect of Ti-doping on the electrochemical performance of sodium vanadium(iii) phosphate

Article information

Article type
Paper
Submitted
24 Nov 2017
Accepted
22 Dec 2017
First published
01 Feb 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 5523-5531

Effect of Ti-doping on the electrochemical performance of sodium vanadium(III) phosphate

B. Zhang, T. Zeng, Y. Liu and J. Zhang, RSC Adv., 2018, 8, 5523 DOI: 10.1039/C7RA12743J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements