Issue 21, 2018, Issue in Progress

Interface studies of well-controlled polymer bilayers and field-effect transistors prepared by a mixed-solvent method

Abstract

The properties of semiconductor/dielectric interfaces are crucial to the performance of polymer field-effect transistors. The key to fabricating high-performance polymer transistors by spin-coating is solving solvent corrosion issues, wherein the solvent of the top polymer produces a rough interface or damage on the underlying polymer layer during deposition. Herein, we propose a mixed-solvent method that employs a mixture of an orthogonal solvent of the underlying polymer and a good solvent of the top polymer as the solvent of the top polymer to prepare polymer bilayers and produce a comparative study of the trap density at the semiconductor/dielectric interface of the corresponding transistor. By changing the ratio of orthogonal solvent to good solvent, namely the degree of orthogonality of the mixed solvent with respect to the underlying polymer, the interface and film qualities of polymer bilayers can be well controlled. We applied this method to spin-coat poly(3-hexylthiophene) (P3HT) on poly(methylmethacrylate) (PMMA) with a mixture of cyclohexane (orthogonal solvent) and chloroform (good solvent). The results of morphology characterizations and electrical property studies indicate the optimal ratio of cyclohexane to chloroform for preparing high-quality P3HT/PMMA bilayers for field-effect conduction is 7 : 3. Transistors based on the optimal bilayers with a bottom-gate/top-contact configuration and a long channel length show good performance. The trap density at the P3HT/PMMA interface is evaluated to be 3.6 × 1012 cm−2 eV−1 from the subthreshold swing, characterizing the distribution of the interface trap levels across the bandgap in P3HT. Furthermore, based on deviations from ideality in the capacitance–voltage characteristics of the metal–insulator–semiconductor capacitor in the device, the traps at the interface are found to be acceptor-type, with the trap density determined to be 2.3 × 1011 cm−2. This value is in a good agreement with that estimated from the subthreshold swing.

Graphical abstract: Interface studies of well-controlled polymer bilayers and field-effect transistors prepared by a mixed-solvent method

Article information

Article type
Paper
Submitted
08 Dec 2017
Accepted
03 Mar 2018
First published
21 Mar 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 11272-11279

Interface studies of well-controlled polymer bilayers and field-effect transistors prepared by a mixed-solvent method

F. Zhang, Y. Hu, Z. Lou, X. Xin, M. Zhang, Y. Hou and F. Teng, RSC Adv., 2018, 8, 11272 DOI: 10.1039/C7RA13143G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements