Issue 30, 2018, Issue in Progress

Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries

Abstract

This study fabricated and demonstrated a functional, stable electrode structure for a high capacity Li-ion battery (LIB) anode. Effective performance is assessed in terms of reversible lithiation for a significant number of charge–discharge cycles to 80% of initial capacity. The materials selected for this study are silicon and tin and are co-deposited using an advanced manufacturing technique (plasma-enhanced chemical vapour deposition), shown to be a scalable process that can facilitate film growth on 3D substrates. Uniform and hybrid crystalline–amorphous Si nanowire (SiNW) growth is achieved via a vapour–liquid–solid mechanism using a Sn metal catalyst. SiNWs of less than 300 nm diameter are known to be less susceptible to fracture and when grown this way have direct electrical conductivity to the current collector, with sufficient room for expansion. Electrochemical characterisation shows stable cycling at capacities of 1400 mA h g−1 (>4 × the capacity limit of graphite). This hybrid system demonstrates promising electrochemical performance, can be grown at large scale and has also been successfully grown on flexible carbon paper current collectors. These findings will have impact on the development of flexible batteries and wearable energy storage.

Graphical abstract: Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries

Article information

Article type
Paper
Submitted
20 Dec 2017
Accepted
27 Apr 2018
First published
08 May 2018
This article is Open Access
Creative Commons BY license

RSC Adv., 2018,8, 16726-16737

Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries

M. J. Loveridge, R. Malik, S. Paul, K. N. Manjunatha, S. Gallanti, C. Tan, M. Lain, A. J. Roberts and R. Bhagat, RSC Adv., 2018, 8, 16726 DOI: 10.1039/C7RA13489D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements