Issue 11, 2018, Issue in Progress

The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide

Abstract

A thermal decomposition route with different sintering temperatures was employed to prepare non-stoichiometric nickel oxide (Ni1−δO) from Ni(NO3)2·6H2O as a precursor. The non-stoichiometry of samples was then studied chemically by iodometric titration, wherein the concentration of Ni3+ determined by chemical analysis, which is increasing with increasing excess of oxygen or reducing the sintering temperature from the stoichiometric NiO; it decreases as sintering temperature increases. These results were corroborated by the excess oxygen obtained from the thermo-gravimetric analysis (TGA). X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques indicate the crystalline nature, Ni–O bond vibrations and cubic structural phase of Ni1−δO. The change in oxidation state of nickel from Ni3+ to Ni2+ were seen in the X-ray photoelectron spectroscopy (XPS) analysis and found to be completely saturated in Ni2+ as the sintering temperature reaches 700 °C. This analysis accounts for the implication of non-stoichiometric on the magnetization data, which indicate a shift in antiferromagnetic ordering temperature (TN) due to associated increased magnetic disorder. A sharp transition in the specific heat capacity at TN and a shift towards lower temperature are also evidenced with respect to the non-stoichiometry of the system.

Graphical abstract: The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2018
Accepted
27 Jan 2018
First published
06 Feb 2018
This article is Open Access
Creative Commons BY license

RSC Adv., 2018,8, 5882-5890

The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide

P. Dubey, N. Kaurav, R. S. Devan, G. S. Okram and Y. K. Kuo, RSC Adv., 2018, 8, 5882 DOI: 10.1039/C8RA00157J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements