Issue 25, 2018, Issue in Progress

Sulfur compounds reactivity in the ODS of model and real feeds on W–SBA based catalysts

Abstract

W based catalysts were synthesized by dry impregnation of SBA-15 mesoporous silica with phosphotungstic acid (HPW) solution with W contents between 5 and 20%, the HPW compound being preserved after calcination. The catalysts performance and the reactivity of various sulfide compounds were evaluated in the oxidative desulfurization (ODS) of model solutions and of real diesels, with sulfur contents ranging from 50 to 2000 ppm. The reactivity of benzothiophene and dibenzothiophene compounds was different in the ODS of model solutions but globally identical in the ODS of SRGO. The monitoring of the concentration of a range of alkyl DBT compounds (with alkyl groups from C2 to C5) in LGO confirmed the importance of the steric hindrance of alkyl substituents in the 4,6 position near the S atom, as well as of the size of the alkyl groups. Among the xW/SBA series, the catalyst with the highest loading showed the best performance in the ODS of LGO and SRGO while the catalysts efficiency could not be discriminated in the ODS of model solutions. In the ODS of both model solutions and real feeds, the W/SBA catalyst was found to be much more efficient than a catalyst obtained by impregnation of a commercial silica with similar loading, highlighting the beneficial use of a mesoporous support with high surface area and pore volume that allowed well-dispersed tungsten species to be obtained. The quantity of sulfones precipitated and/or retained on the catalyst depended on the feed and was found to be higher in the ODS of model solution than in the ODS of real feeds. The precipitated/retained sulfones on the support may induce catalyst deactivation, which highlights the importance of the textural properties of the support. This detailed study points out the difficulty of extrapolating results obtained in the ODS of model solution to the ODS of real feeds.

Graphical abstract: Sulfur compounds reactivity in the ODS of model and real feeds on W–SBA based catalysts

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2018
Accepted
27 Mar 2018
First published
12 Apr 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 13714-13721

Sulfur compounds reactivity in the ODS of model and real feeds on W–SBA based catalysts

G. Estephane, C. Lancelot, P. Blanchard, J. Toufaily, T. Hamiye and C. Lamonier, RSC Adv., 2018, 8, 13714 DOI: 10.1039/C8RA01542B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements