Mesopore-dominant nitrogen-doped carbon with a large defect degree and high conductivity via inherent hydroxyapatite-induced self-activation for lithium-ion batteries†
Abstract
In this study, N-doped mesopore-dominant carbon (NMC) materials were prepared using bio-waste tortoise shells as a carbon source via a one-step self-activation process. With intrinsic hydroxyapatites (HAPs) as natural templates to fulfill the synchronous carbonization and activation of the precursor, this highly efficient and time-saving method provides N-doped carbon materials that represent a large mesopore volume proportion of 74.59%, a high conductivity of 4382 m S−1, as well as larger defects, as demonstrated by Raman and XRD studies. These features make the NMC exhibit a high reversible lithium-storage capacity of 970 mA h g−1 at 0.1 A g−1, a strong rate capability of 818 mA h g−1 at 2 A g−1, and a good capacity of 831 mA h g−1 after 500 cycles at 1 A g−1. This study provides a highly efficient and feasible method to prepare renewable biomass-derived carbons as advanced electrode materials for the application of energy storage.