Issue 28, 2018, Issue in Progress

One-step fabrication of carbonaceous solid acid derived from lignosulfonate for the synthesis of biobased furan derivatives

Abstract

An eco-friendly and low-cost lignosulfonate-based acidic carbonaceous catalyst (LS-SO3H) was effectively fabricated using the sulfite pulping by-product of sodium lignosulfonate as a precursor by facile one-step simultaneous carbonization and sulfonation, and employed for the synthesis of promising biofuel furan derivatives from biorenewable feedstocks. The catalyst preparation conditions significantly affected the preparation and properties of LS-SO3H. A relatively high catalyst preparation yield (40.4%) with strong –SO3H density (1.33 mmol g−1) were achieved when the lignosulfonate was treated in concentrated H2SO4 solution at 120 °C for 6 h. The preparation yield of LS-SO3H was nearly twice as much as that of one-step prepared catalyst using alkaline lignin (another technical lignin from pulping) as a precursor. The as-prepared LS-SO3H had similar textural characteristics to the frequently-used two-step prepared carbonaceous catalyst involving pyrolysis carbonization and sulfonation. LS-SO3H was found to show good catalytic activity for the synthesis of 5-ethoxymethylfurfural (EMF) in ethanol medium, affording around 86%, 57% and 47% yields from 5-hydroxymethylfurfural (HMF), fructose and inulin, respectively. Also, a high HMF yield of 83% could be obtained from fructose when DMSO was replaced as reaction medium. The used LS-SO3H was readily recovered by filtration, and remained active in recycle runs.

Graphical abstract: One-step fabrication of carbonaceous solid acid derived from lignosulfonate for the synthesis of biobased furan derivatives

Article information

Article type
Paper
Submitted
08 Mar 2018
Accepted
21 Apr 2018
First published
26 Apr 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 15762-15772

One-step fabrication of carbonaceous solid acid derived from lignosulfonate for the synthesis of biobased furan derivatives

X. Yu, L. Peng, X. Gao, L. He and K. Chen, RSC Adv., 2018, 8, 15762 DOI: 10.1039/C8RA02056F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements