Issue 37, 2018, Issue in Progress

In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution

Abstract

Electrochemical and photoelectrochemical (PEC) oxygen evolution reactions (OER) are receiving considerable attention owing to their important roles in the overall water splitting reaction. In this contribution, ternary NiFeCo-layered double hydroxide (LDH) nanoplates were in situ hybridized with Ti3C2Tx (the MXene phase) via a simple solvothermal process during which Ti3C2Tx was partially oxidized to form anatase TiO2 nanoparticles. The obtained Ti3C2Tx/TiO2/NiFeCo-LDH composite (denoted as TTL) showed a superb OER performance as compared with pristine NiFeCo-LDH and comercial IrO2 catalyst, achieving a current density of 10 mA cm−2 at a potential of 1.55 V versus a reversible hydrogen electrode (vs. RHE) in 0.1 M KOH. Importantly, the composite was further deposited on a standard BiVO4 film to construct a TTL/BiVO4 photoanode which showed a significantly enhanced photocurrent density of 2.25 mA cm−2 at 1.23 V vs. RHE under 100 mW cm−2 illumination. The excellent PEC-OER performance can be attributed to the presence of TiO2 nanoparticles which broadened the light adsorption to improve the generation of electron/hole pairs, while the ternary LDH nanoplates were efficient hole scavengers and the metallic Ti3C2Tx nanosheets were effective shuttles for transporting electrons/ions. Our in situ synthetic method provides a facile way to prepare multi-component catalysts for effective water oxidation and solar energy conversion.

Graphical abstract: In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2018
Accepted
28 May 2018
First published
05 Jun 2018
This article is Open Access
Creative Commons BY license

RSC Adv., 2018,8, 20576-20584

In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution

N. Hao, Y. Wei, J. Wang, Z. Wang, Z. Zhu, S. Zhao, M. Han and X. Huang, RSC Adv., 2018, 8, 20576 DOI: 10.1039/C8RA02349B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements