Issue 26, 2018

Ternary composites by an in situ hydrolytic polymerization process

Abstract

Polyamide 6/modified silica composite materials have been prepared by a coupled polymerization procedure. For this purpose, the three-component-system we presented in a previous publication, consisting of ε-aminocaproic acid (ε-ACA), ε-caprolactam (ε-CL), and 1,1′,1′′,1′′′-silanetetrayltetrakis-(azepan-2-one) (Si(ε-CL)4), has been combined with other silicon monomers with one or two methyl groups (MeSi(ε-CL)3 and Me2Si(ε-CL)2). The simultaneous polymerization of ε-CL and silicon monomers leads to the in situ formation of silica/polysiloxane particles and the surrounding polyamide 6 matrix in one step. Moreover, 3-aminopropyltriethoxysilane has been added to the three-component-system to achieve covalent bonding between organic and inorganic phases and to inhibit agglomeration of the silica particles. Chemical structures and morphologies of the composites have been investigated by solid-state NMR and FTIR spectroscopy as well as electron microscopy and SEC measurements. Structural effects on thermal properties have been studied by DSC and TGA measurements.

Graphical abstract: Ternary composites by an in situ hydrolytic polymerization process

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2018
Accepted
02 Apr 2018
First published
18 Apr 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 14713-14721

Ternary composites by an in situ hydrolytic polymerization process

K. Nagel, L. Kaßner, A. Seifert, R.-E. Grützner, G. Cox and S. Spange, RSC Adv., 2018, 8, 14713 DOI: 10.1039/C8RA02402B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements