Synthesis of core–shell N-TiO2@CuOx with enhanced visible light photocatalytic performance†
Abstract
In this paper, a core–shell N-TiO2@CuOx nanomaterial with increased visible light photocatalytic activity was successfully synthesized using a simple method. By synthesizing ammonium titanyl oxalate as a precursor, N-doped TiO2 can be prepared, then the core–shell structure of N-TiO2@CuOx with a catalyst loading of Cu on its surface was prepared using a precipitation method. It was characterized in detail using XRD, TEM, BET, XPS and H2-TPR, while its photocatalytic activity was evaluated using the probe reaction of the degradation of methyl orange. We found that the core–shell N-TiO2@CuOx nanomaterial can lessen the TiO2 energy band-gap width due to the N-doping, as well as remarkably improving the photo-degradation activity due to a certain loading of Cu on the surfaces of N-TiO2 supports. Therefore, a preparation method for a novel N, Cu co-doped TiO2 photocatalyst with a core–shell structure and efficient photocatalytic performance has been provided.