Issue 34, 2018, Issue in Progress

Upconversion from fluorophosphate glasses prepared with NaYF4:Er3+,Yb3+ nanocrystals

Abstract

The direct doping method was applied to fabricate upconverter fluorophosphate glasses in the system (90NaPO3-(10-x)Na2O-xNaF) (mol%) by adding NaYF4:Er3+,Yb3+ nanocrystals. An increase in the network connectivity, a red shift of the optical band gap and a decrease in the thermal properties occur when Na2O is progressively replaced by NaF. To ensure the survival and the dispersion of the nanocrystals in the glasses with x = 0 and 10, three doping temperatures (Tdoping) (525, 550 and 575 °C) at which the nanocrystals were added in the glass melt after melting and 2 dwell times (3 and 5 minutes) before quenching the glasses were tested. Using 5 wt% of the NaYF4:Er3+,Yb3+ nanocrystals, green emission from the NaYF4:Er3+,Yb3+ nanocrystals-containing glasses was observed using a 980 nm pumping, the intensity of which depends on the glass composition and on the direct doping parameters (Tdoping and dwell time). The strongest upconversion was obtained from the glass with x = 10 prepared using a Tdoping of 550 °C and a 3 min dwell time. Finally, we showed that the upconversion, the emission at 1.5 μm and of the transmittance spectra of the nanocrystals-containing glasses could be measured to verify if decomposition of the nanocrystals occurred in glass melts during the preparation of the glasses.

Graphical abstract: Upconversion from fluorophosphate glasses prepared with NaYF4:Er3+,Yb3+ nanocrystals

Article information

Article type
Paper
Submitted
17 Apr 2018
Accepted
17 May 2018
First published
24 May 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 19226-19236

Upconversion from fluorophosphate glasses prepared with NaYF4:Er3+,Yb3+ nanocrystals

N. Ojha, M. Tuomisto, M. Lastusaari and L. Petit, RSC Adv., 2018, 8, 19226 DOI: 10.1039/C8RA03298J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements