Issue 50, 2018, Issue in Progress

Catalytic and anti-bacterial properties of biosynthesized silver nanoparticles using native inulin

Abstract

Silver nanoparticles (Ag NPs) were green synthesized using native inulin as the reducing and capping agent with varied incubation temperatures, incubation times and Ag+ concentrations. The biosynthesized Ag NPs were characterized using UV-visible spectroscopy, Field Emission Transmission Electron Microscopy (FE-TEM) and X-ray powder diffraction. The UV visible spectra of the Ag NPs revealed a characteristic surface plasmon resonance peak at 420 nm. FE-TEM showed that the biosynthesized Ag NPs were spherically shaped and monodispersed nanoparticles. The sizes were 18.5 ± 0.9 nm and 20.0 ± 1.2 nm for the Ag NPs synthesized at 80 °C and 100 °C for 2 h using 0.1% inulin and 2 mM Ag+. Their PDIs were 0.180 ± 0.05 and 0.282 ± 0.13, respectively. Improving the incubation temperature, incubation time and silver nitrate concentration promoted Ag NP synthesis. The prepared Ag NPs were effective in the catalytic reduction of 4-NP and in inhibiting the growth of bacteria. The inhibition zone could reach 10.21 ± 2.12 mm and 9.92 ± 0.50 mm for Escherichia coli and Staphylococcus aureus. The kinetic rate constant (kapp) could reach 0.0113 s−1, and the maximum inhibitory zones were 10.21 ± 2.12 mm and 9.92 ± 0.50 mm, respectively, for the two microorganisms. This biosynthesis illustrates that native inulin could be a potential candidate in the green fabrication of Ag NPs, and this is promising in catalytic and bacteriostatic fields.

Graphical abstract: Catalytic and anti-bacterial properties of biosynthesized silver nanoparticles using native inulin

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2018
Accepted
30 Jul 2018
First published
14 Aug 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 28746-28752

Catalytic and anti-bacterial properties of biosynthesized silver nanoparticles using native inulin

W. Xu, K. Huang, W. Jin, D. Luo, H. Liu, Y. Li and X. Liu, RSC Adv., 2018, 8, 28746 DOI: 10.1039/C8RA03386B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements