Issue 35, 2018

Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations

Abstract

We study the influence of inkjet printing scheme and sintering parameter on the electrical resistivity of multi-layer silver nanoparticle films. A central composite Design Of Experiments (DOE) is employed to maximize experimental efficiency and improve the statistical significance of parameter estimates. The resulting mathematical correlations allow to interpret the influence of the print and sintering parameters. Detailed inspection of the correlations reveals the existence of local extrema and indicates that a structured approach such as the DOE would be significantly more effective for fabricating films with a minimum of resistivity. Furthermore, we modify the well-known Fuchs–Sondheimer Mayadas–Shatzkes model to correlate the resistivity of a multi-layer nanoparticle film with the sintering temperature and time. The modified model uses literature data but one constant inferred from two experiments. After model adjustment, the resistivities of films fabricated with different parameters can be predicted with good accuracy. This validation tremendously increases applicability and relevance of the model.

Graphical abstract: Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2018
Accepted
21 May 2018
First published
29 May 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 19679-19689

Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations

S. Mypati, S. R. Dhanushkodi, M. McLaren, A. Docoslis, B. A. Peppley and D. P. J. Barz, RSC Adv., 2018, 8, 19679 DOI: 10.1039/C8RA03627F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements